JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **27**, No. 4, November 2014 http://dx.doi.org/10.14403/jcms.2014.27.4.603

DOUBLE PAIRWISE (r, s)(u, v)-SEMICONTINUOUS MAPPINGS

EUN PYO LEE* AND SEUNG ON LEE**

ABSTRACT. We introduce the concepts of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosures and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiinteriors. Using the notions, we investigate some of characteristic properties of double pairwise (r, s)(u, v)-semicontinuous, double pairwise (r, s)(u, v)-semiopen and double pairwise (r, s)(u, v)-semiclosed mappings.

1. Introduction

Chang [2] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [13], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [12].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Çoker and his colleagues [4, 6, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and M. Demirci [5] defined intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces.

Kandil [8] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces.

In this paper, we introduce the concepts of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosures and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiinteriors. Using the

Received August 09, 2014; Accepted October 10, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A40, 03E72.

Key words and phrases: double (r, s)(u, v)-semiclosures, double (r, s)(u, v)-semi interiors, double pairwise (r, s)(u, v)-semicontinuous.

Correspondence should be addressed to Seung On Lee, solee@chungbuk.ac.kr.

This work was supported by the research grant of Chungbuk National University in 2013.

notions, we investigate some of characteristic properties of double pairwise (r, s)(u, v)-semicontinuous, double pairwise (r, s)(u, v)-semiopen and double pairwise (r, s)(u, v)-semiclosed mappings.

2. Preliminaries

Let I be the unit interval [0, 1] of the real line. A member μ of I^X is called a fuzzy set of X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By 0 and 1 we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An *intuitionistic fuzzy set* A is an ordered pair

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and μ_A + $\gamma_A \leq \tilde{1}.$

Obviously every fuzzy set μ on X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

DEFINITION 2.1. [1] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \leq \mu_B$ and $\gamma_A \geq \gamma_B$. (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (3) $A^{c} = (\gamma_{A}, \mu_{A}).$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- (5) $A \cup B = (\mu_A \lor \mu_B, \gamma_A \land \gamma_B).$
- (6) $0_{\sim} = (\tilde{0}, \tilde{1})$ and $1_{\sim} = (\tilde{1}, \tilde{0})$.

Let f be a mapping from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy set of X and $B = (\mu_B, \gamma_B)$ an intuitionistic fuzzy set of Y. Then:

(1) The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \tilde{1} - f(\tilde{1} - \gamma_A)).$$

(2) The inverse image of B under f, denoted by $f^{-1}(B)$, is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

An *intuitionistic fuzzy topology* on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0_{\sim}, 1_{\sim} \in T$.
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for all i, then $\bigcup A_i \in T$.

The pair (X, T) is called an *intuitionistic fuzzy topological space*.

Let I(X) be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r, s) such that $r, s \in I$ and $r + s \leq 1$.

DEFINITION 2.2. [13] Let X be a nonempty set. An *intuitionistic* fuzzy topology in Šostak's sense $\mathcal{T}^{\mu\gamma} = (\mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ on X is a mapping $\mathcal{T}^{\mu\gamma} : I(X) \to I \otimes I(\mathcal{T}^{\mu}, \mathcal{T}^{\gamma} : I(X) \to I)$ which satisfies the following properties:

- (1) $\mathcal{T}^{\mu}(0_{\sim}) = \mathcal{T}^{\mu}(1_{\sim}) = 1$ and $\mathcal{T}^{\gamma}(0_{\sim}) = \mathcal{T}^{\gamma}(1_{\sim}) = 0.$
- (2) $\mathcal{T}^{\mu}(A \cap B) \geq \mathcal{T}^{\mu}(A) \wedge \mathcal{T}^{\mu}(B)$ and $\mathcal{T}^{\gamma}(A \cap B) \leq \mathcal{T}^{\gamma}(A) \vee \mathcal{T}^{\gamma}(B)$.
- (3) $\mathcal{T}^{\mu}(\bigcup A_i) \ge \bigwedge \mathcal{T}^{\mu}(A_i) \text{ and } \mathcal{T}^{\gamma}(\bigcup A_i) \le \bigvee \mathcal{T}^{\gamma}(A_i).$

The $(X, \mathcal{T}^{\mu\gamma}) = (X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ is said to be an *intuitionistic fuzzy topolog*ical space in Šostak's sense. Also, we call $\mathcal{T}^{\mu}(A)$ a gradation of openness of A and $\mathcal{T}^{\gamma}(A)$ a gradation of nonopenness of A.

DEFINITION 2.3. [11] Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space in Šostak's sense $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set if $\mathcal{T}^{\mu}(A) \ge r$ and $\mathcal{T}^{\gamma}(A) \le s$,
- (2) a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set if $\mathcal{T}^{\mu}(A^c) \geq r$ and $\mathcal{T}^{\gamma}(A^c) \leq s$.

Let $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ be an intuitionistic fuzzy topological space in Šostak's sense. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closure is defined by

$$\mathcal{T}^{\mu\gamma}\text{-cl}(A, (r, s))$$

= $\bigcap \{B \in I(X) \mid A \subseteq B, B \text{ is } \mathcal{T}^{\mu\gamma}\text{-fuzzy } (r, s)\text{-closed}\}$

and the $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-interior is defined by

$$\begin{split} \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(A,(r,s)) \\ &= \bigcup\{B \in I(X) \mid A \supseteq B, B \text{ is } \mathcal{T}^{\mu\gamma}\text{-}\mathrm{fuzzy } (r,s)\text{-}\mathrm{open}\}. \end{split}$$

A system $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ consisting of a set X with two intuitionistic fuzzy topologies in Šostak's sense $\mathcal{T}^{\mu\gamma}$ and $\mathcal{U}^{\mu\gamma}$ on X is called a *double bitopological space*.

DEFINITION 2.4. [10] Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then A is said to be

- (1) a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set if there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq \mathcal{U}^{\mu\gamma}$ -cl(B, (u, v)),
- (2) a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set if there is an $\mathcal{U}^{\mu\gamma}$ fuzzy (u, v)-open set B in X such that $B \subseteq A \subseteq \mathcal{T}^{\mu\gamma}$ -cl(B, (r, s)),
- (3) a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set if there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set B in X such that $\mathcal{U}^{\mu\gamma}$ -int $(B, (u, v)) \subseteq A \subseteq B$,
- (4) a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set if there is an $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-closed set B in X such that $\mathcal{T}^{\mu\gamma}$ -int $(B, (r, s)) \subseteq A \subseteq B$.

3. Double pairwise (r, s)(u, v)-semicontinuous mappings

DEFINITION 3.1. Let $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ be a double bitopological space and $(r, s), (u, v) \in I \otimes I$. For each $A \in I(X)$, the $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosure is defined by

$$(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dscl}(A, (r, s), (u, v)) = \bigcap \{B \in I(X) \mid A \subseteq B, B \text{ is } (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-double} (r, s)(u, v)\operatorname{-semiclosed} \}$$

and the $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosure is defined by

$$(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-dscl}(A, (u, v), (r, s)) = \bigcap \{B \in I(X) \mid A \subseteq B, B \text{ is } (\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-double} (u, v)(r, s)\operatorname{-semiclosed} \}.$$

DEFINITION 3.2. Let $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ be a double bitopological space and $(r, s), (u, v) \in I \otimes I$. For each $A \in I(X)$, the $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiinterior is defined by

$$(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\text{-dsint}(A, (r, s), (u, v)) = \bigcup \{B \in I(X) \mid A \supseteq B, B \text{ is } (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\text{-double } (r, s)(u, v)\text{-semiopen}\}$$

and the $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiinterior is defined by

$$(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\text{-dsint}(A, (u, v), (r, s)) = \bigcup \{B \in I(X) \mid A \supseteq B, B \text{ is } (\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\text{-double } (u, v)(r, s)\text{-semiopen}\}.$$

Obviously, $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl(A, (r, s), (u, v)) is the smallest $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ double (r, s)(u, v)-semiclosed set which contains A and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl(A, (r, s), (u, v)) = A for any $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)semiclosed set A. Also $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint(A, (r, s), (u, v)) is the greatest $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set which is contained A and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint(A, (r, s), (u, v)) = A for any $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)semiopen set A. Moreover, we have

$$\mathcal{T}^{\mu\gamma}\operatorname{-int}(A, (r, s)) \subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dsint}(A, (r, s), (u, v))$$
$$\subseteq A$$
$$\subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dscl}(A, (r, s), (u, v))$$
$$\subseteq \mathcal{T}^{\mu\gamma}\operatorname{-cl}(A, (r, s)).$$

Also, we have the following results:

- (1) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(0_{\sim}, (r, s), (u, v)) = 0_{\sim}$ and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(1_{\sim}, (r, s), (u, v)) = 1_{\sim}$.
- (2) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A, (r, s), (u, v)) \supseteq A$.
- (3) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A \cup B, (r, s), (u, v))$ $\supseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A, (r, s), (u, v)) \cup (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl(B, (r, s), (u, v)).
- (4) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl(A, (r, s), (u, v)), (r, s), (u, v))= $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl(A, (r, s), (u, v)).
- (5) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(0_{\sim}, (r, s), (u, v)) = 0_{\sim}$ and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(1_{\sim}, (r, s), (u, v)) = 1_{\sim}$.
- (6) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(A, (r, s), (u, v)) \subseteq A$.
- (7) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(A \cap B, (r, s), (u, v))$ $\subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(A, (r, s), (u, v)) \cap (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint(B, (r, s), (u, v)).
- (8) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint(A, (r, s), (u, v)), (r, s), (u, v))= $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint(A, (r, s), (u, v)).

THEOREM 3.3. For an intuitionistic fuzzy set A of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$, we have:

- (1) $((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\text{-}dsint(A, (r, s), (u, v)))^c = (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\text{-}dscl(A^c, (r, s), (u, v)).$ (2) $((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\text{-}dscl(A, (r, s), (u, v)))^c = (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\text{-}dsint(A^c, (r, s), (u, v)).$
- (2) ((7, 50, 7) about (7, 5), (0, 5))) = (7, 50, 7) about (11, (7, 5), (0, 5))

Proof. (1) Since $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A^c, (r, s), (u, v))$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set and $A^c \subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A^c, (r, s), (u, v))$, we have $((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A^c, (r, s), (u, v)))^c$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set of X and $((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dscl $(A^c, (r, s), (u, v)))^c \subseteq A$. Thus

$$\begin{aligned} &((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dscl}(A^c,(r,s),(u,v)))^c \\ &= (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dsint}(((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dscl}(A^c,(r,s),(u,v)))^c,(r,s),(u,v)) \\ &\subseteq (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dsint}(A,(r,s),(u,v)) \end{aligned}$$

and hence

$$((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(A,(r,s),(u,v)))^{c} \subseteq (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dscl}(A^{c},(r,s),(u,v)).$$

Conversely, since $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint(A, (r, s), (u, v)) is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ double (r, s)(u, v)-semiopen set and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(A, (r, s), (u, v)) \subseteq A, ((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(A, (r, s), (u, v)))^c$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)semiclosed set of X and $A^c \subseteq ((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -dsint $(A, (r, s), (u, v)))^c$. Thus

$$(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \operatorname{-dscl}(A^c, (r, s), (u, v))$$

$$\subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \operatorname{-dscl}(((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \operatorname{-dsint}(A, (r, s), (u, v)))^c, (r, s), (u, v)))$$

$$= ((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \operatorname{-dsint}(A, (r, s), (u, v)))^c.$$
(2) Similar to (1)

Let $f: (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping from a double bitopological space X to a double bitopological space Y and $(r, s), (u, v) \in I \otimes I$. Then f is called a *double pairwise* (r, s)(u, v)-continuous ((r, s)(u, v)open and (r, s)(u, v)-closed, respectively) mapping if the induced mapping $f: (X, \mathcal{T}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma})$ is fuzzy (r, s)-continuous ((r, s)-open and (r, s)-closed, respectively) and the induced mapping $f: (X, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{W}^{\mu\gamma})$ is fuzzy (u, v)-continuous ((u, v)-open and (u, v)-closed, respectively).

DEFINITION 3.4. Let $f : (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping from a double bitopological space X to a double bitopological space Y and $(r, s), (u, v) \in I \otimes I$. Then f is called

- (1) double pairwise (r, s)(u, v)-semicontinuous if $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ double (r, s)(u, v)-semiopen set of X for each $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-open set A of Y and $f^{-1}(B)$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set of X for each $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-open set B of Y,
- (2) double pairwise (r, s)(u, v)-semiopen if f(C) is a (V^{μγ}, W^{μγ})-double (r, s)(u, v)-semiopen set of Y for each T^{μγ}-fuzzy (r, s)-open set C of X and f(D) is a (W^{μγ}, V^{μγ})-double (u, v)(r, s)-semiopen set of Y for each U^{μγ}-fuzzy (u, v)-open set D of X,
- (3) double pairwise (r, s)(u, v)-semiclosed if f(C) is a $(\mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set of Y for each $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set C of X and f(D) is a $(\mathcal{W}^{\mu\gamma}, \mathcal{V}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed set of Y for each $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-closed set D of X.

It is obvious that every double pairwise (r, s)(u, v)-continuous mapping is a double pairwise (r, s)(u, v)-semicontinuous mapping but the converse need not be true which is shown by the following example.

EXAMPLE 3.5. Let $X = \{x, y\}$ and let A_1, A_2, A_3 and A_4 be intuitionistic fuzzy sets of X defined as

$$A_1(x) = (0.0, 0.7), \quad A_1(y) = (0.4, 0.3);$$

$$A_2(x) = (0.5, 0.2), \quad A_2(y) = (0.6, 0.1);$$

$$A_3(x) = (0.1, 0.4), \quad A_3(y) = (0.7, 0.1);$$

and

$$A_4(x) = (0.6, 0.1), \quad A_4(y) = (0.8, 0.0).$$

Define $\mathcal{T}^{\mu\gamma} : I(X) \to I \otimes I$ and $\mathcal{U}^{\mu\gamma} : I(X) \to I \otimes I$ by

$$\mathcal{T}^{\mu\gamma}(A) = (\mathcal{T}^{\mu}(A), \mathcal{T}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{5}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}^{\mu\gamma}(A) = (\mathcal{U}^{\mu}(A), \mathcal{U}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{3}, \frac{1}{4}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ is a double bitopological space on X. Define $\mathcal{V}^{\mu\gamma}: I(X) \to I \otimes I$ and $\mathcal{W}^{\mu\gamma}: I(X) \to I \otimes I$ by

$$\mathcal{V}^{\mu\gamma}(A) = (\mathcal{V}^{\mu}(A), \mathcal{V}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{5}) & \text{if } A = A_3, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{W}^{\mu\gamma}(A) = (\mathcal{W}^{\mu}(A), \mathcal{W}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{3}, \frac{1}{4}) & \text{if } A = A_4, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $(X, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ is a double bitopological space on X. Consider the identity mapping $1_X : (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (X, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$. Then it is a double pairwise $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -semicontinuous mapping which is not a double pairwise $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -continuous mapping.

THEOREM 3.6. Let $f: (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is a double pairwise (r, s)(u, v)-semicontinuous mapping.
- (2) $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed set of X for each $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-closed set A of Y and $f^{-1}(B)$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ double (u, v)(r, s)-semiclosed set of X for each $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)closed set B of Y.

(3) For each intuitionistic fuzzy set C of X,

$$f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dscl}(C,(r,s),(u,v))) \subseteq \mathcal{V}^{\mu\gamma}\operatorname{-cl}(f(C),(r,s))$$

and

$$f((\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\text{-}dscl(C, (u, v), (r, s))) \subseteq \mathcal{W}^{\mu\gamma}\text{-}cl(f(C), (u, v)).$$

(4) For each intuitionistic fuzzy set A of Y,

$$(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}dscl(f^{-1}(A),(r,s),(u,v))\subseteq f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}cl(A,(r,s)))$$
 and

$$(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma}) \operatorname{-dscl}(f^{-1}(A), (u, v), (r, s)) \subseteq f^{-1}(\mathcal{W}^{\mu\gamma} \operatorname{-cl}(A, (u, v))).$$

(5) For each intuitionistic fuzzy set A of Y,

$$f^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-int}(A,(r,s))) \subseteq (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(f^{-1}(A),(r,s),(u,v))$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-int}(A,(u,v))) \subseteq (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dsint}(f^{-1}(A),(u,v),(r,s)).$$

Proof. $(1) \Rightarrow (2)$ It is obvious.

(2) \Rightarrow (3) Let *C* be any intuitionistic fuzzy set of *X*. Then *f*(*C*) is an intuitionistic fuzzy set of *Y*, and hence $\mathcal{V}^{\mu\gamma}$ -cl(*f*(*C*), (*r*, *s*)) is $\mathcal{V}^{\mu\gamma}$ fuzzy (*r*, *s*)-closed and $\mathcal{W}^{\mu\gamma}$ -cl(*f*(*C*), (*u*, *v*)) is $\mathcal{W}^{\mu\gamma}$ -fuzzy (*u*, *v*)-closed in *Y*. By (2), we have $f^{-1}(\mathcal{V}^{\mu\gamma}\text{-cl}(f(C), (r, s)))$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (*r*, *s*)(*u*, *v*)-semiclosed set and $f^{-1}(\mathcal{W}^{\mu\gamma}\text{-cl}(f(C), (u, v)))$ is a $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ double (*u*, *v*)(*r*, *s*)-semiclosed set of *X*. Also,

$$C \subseteq f^{-1}f(C) \subseteq f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), (r, s)))$$

and

$$C \subseteq f^{-1}f(C) \subseteq f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-cl}(f(C),(u,v))).$$

Thus

$$\begin{aligned} (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) - \mathrm{dscl}(C, (r, s), (u, v)) \\ &\subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) - \mathrm{dscl}(f^{-1}(\mathcal{V}^{\mu\gamma} - \mathrm{cl}(f(C), (r, s))), (r, s), (u, v)) \\ &= f^{-1}(\mathcal{V}^{\mu\gamma} - \mathrm{cl}(f(C), (r, s))) \end{aligned}$$

and

$$\begin{aligned} & (\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\text{-dscl}(C, (u, v), (r, s)) \\ & \subseteq (\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\text{-dscl}(f^{-1}(\mathcal{W}^{\mu\gamma}\text{-cl}(f(C), (u, v))), (u, v), (r, s)) \\ & = f^{-1}(\mathcal{W}^{\mu\gamma}\text{-cl}(f(C), (u, v))). \end{aligned}$$

Hence

$$f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dscl}(C,(r,s),(u,v))) \subseteq ff^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-cl}(f(C),(r,s)))$$
$$\subseteq \mathcal{V}^{\mu\gamma}\operatorname{-cl}(f(C),(r,s))$$

and

$$f((\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-dscl}(C, (u, v), (r, s))) \subseteq ff^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-cl}(f(C), (u, v)))$$
$$\subseteq \mathcal{W}^{\mu\gamma}\operatorname{-cl}(f(C), (u, v)).$$

 $(3) \Rightarrow (4)$ Let A be any intuitionistic fuzzy set of Y. Then $f^{-1}(A)$ is an intuitionistic fuzzy set of X. By (3), we have

$$f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A),(r,s),(u,v))) \subseteq \mathcal{V}^{\mu\gamma}\operatorname{-cl}(ff^{-1}(A),(r,s))$$
$$\subseteq \mathcal{V}^{\mu\gamma}\operatorname{-cl}(A,(r,s))$$

and

$$f((\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A), (u, v), (r, s))) \subseteq \mathcal{W}^{\mu\gamma}\operatorname{-cl}(ff^{-1}(A), (u, v))$$
$$\subseteq \mathcal{W}^{\mu\gamma}\operatorname{-cl}(A, (u, v)).$$

Thus

$$\begin{aligned} (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) - \mathrm{dscl}(f^{-1}(A), (r, s), (u, v)) \\ &\subseteq f^{-1}f((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) - \mathrm{dscl}(f^{-1}(A), (r, s), (u, v))) \\ &\subseteq f^{-1}(\mathcal{V}^{\mu\gamma} - \mathrm{cl}(A, (r, s))) \end{aligned}$$

and

$$(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A), (u, v), (r, s))$$

$$\subseteq f^{-1}f((\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A), (u, v), (r, s)))$$

$$\subseteq f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-cl}(A, (u, v))).$$

 $(4) \Rightarrow (5)$ Let A be any intuitionistic fuzzy set of Y. By (4),

$$(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A)^c, (r, s), (u, v)) \subseteq f^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-cl}(A^c, (r, s)))$$

and

$$(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A)^c, (u, v), (r, s)) \subseteq f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-cl}(A^c, (u, v))).$$

By Theorem 3.3, we have

$$f^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-int}(A, (r, s))) = (f^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-cl}(A^c, (r, s))))^c$$
$$\subseteq ((\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A)^c, (r, s), (u, v)))^c$$
$$= (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dsint}(f^{-1}(A), (r, s), (u, v))$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-int}(A,(u,v))) = (f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-cl}(A^c,(u,v))))^c$$
$$\subseteq ((\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dscl}(f^{-1}(A)^c,(u,v),(r,s)))^c$$
$$= (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dsint}(f^{-1}(A),(u,v),(r,s)).$$

 $(5) \Rightarrow (1)$ Let A be any $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-open set and B any $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-open set of Y. Then $A = \mathcal{V}^{\mu\gamma}$ -int(A, (r, s)) and $B = \mathcal{W}^{\mu\gamma}$ -int(B, (u, v)). By (5)

$$f^{-1}(A) = f^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-int}(A, (r, s)))$$
$$\subseteq (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})\operatorname{-dsint}(f^{-1}(A), (r, s), (u, v))$$
$$\subseteq f^{-1}(A)$$

and

f

$$\begin{aligned} ^{-1}(B) &= f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{int}(B,(u,v))) \\ &\subseteq (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\text{-}\mathrm{dsint}(f^{-1}(B),(u,v),(r,s)) \\ &\subseteq f^{-1}(B). \end{aligned}$$

Thus

$$f^{-1}(A) = (\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \operatorname{-dsint}(f^{-1}(A), (r, s), (u, v))$$

and

$$f^{-1}(B) = (\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma}) \operatorname{-dsint}(f^{-1}(B), (u, v), (r, s)).$$

Hence $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen set and $f^{-1}(B)$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen set of X. Therefore f is a double pairwise (r, s)(u, v)-semicontinuous mapping. \Box

THEOREM 3.7. Let $f : (X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a bijection and $(r, s), (u, v) \in I \otimes I$. Then f is a double pairwise (r, s)(u, v)-semicontinuous mapping if and only if for each intuitionistic fuzzy set C of X,

$$\mathcal{V}^{\mu\gamma}\operatorname{-int}(f(C),(r,s)) \subseteq f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(C,(r,s),(u,v)))$$

and

$$\mathcal{W}^{\mu\gamma}\operatorname{-int}(f(C),(u,v)) \subseteq f((\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dsint}(C,(u,v),(r,s))).$$

Proof. Let C be any intuitionistic fuzzy set of X. Since f is one-to-one,

$$f^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-int}(f(C),(r,s))) \subseteq (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(f^{-1}f(C),(r,s),(u,v))$$
$$= (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(C,(r,s),(u,v))$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-int}(f(C),(u,v))) \subseteq (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dsint}(f^{-1}f(C),(u,v),(r,s))$$
$$= (\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dsint}(C,(u,v),(r,s)).$$

Since f is onto, we have

$$\mathcal{V}^{\mu\gamma}\operatorname{-int}(f(C),(r,s)) = ff^{-1}(\mathcal{V}^{\mu\gamma}\operatorname{-int}(f(C),(r,s)))$$
$$\subseteq f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(C,(r,s),(u,v)))$$

and

$$\mathcal{W}^{\mu\gamma}\operatorname{-int}(f(C),(u,v)) = ff^{-1}(\mathcal{W}^{\mu\gamma}\operatorname{-int}(f(C),(u,v)))$$
$$\subseteq f((\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\operatorname{-dsint}(C,(u,v),(r,s))).$$

Conversely, let A be any intuitionistic fuzzy set of Y. Since f is onto,

$$\mathcal{V}^{\mu\gamma}\operatorname{-int}(A,(r,s)) = \mathcal{V}^{\mu\gamma}\operatorname{-int}(ff^{-1}(A),(r,s))$$
$$\subseteq f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\operatorname{-dsint}(f^{-1}(A),(r,s),(u,v)))$$

and

$$\begin{split} \mathcal{W}^{\mu\gamma}\text{-}\mathrm{int}(A,(u,v)) &= \mathcal{W}^{\mu\gamma}\text{-}\mathrm{int}(ff^{-1}(A),(u,v))\\ &\subseteq f((\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\text{-}\mathrm{dsint}(f^{-1}(A),(u,v),(r,s))). \end{split}$$

since f is one-to-one, we have

$$\begin{split} f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{int}(A,(r,s))) &\subseteq f^{-1}f((\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dsint}(f^{-1}(A),(r,s),(u,v))) \\ &= (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dsint}(f^{-1}(A),(r,s),(u,v)) \end{split}$$

and

$$\begin{split} f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{int}(A,(u,v))) &\subseteq f^{-1}f((\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})\text{-}\mathrm{dsint}(f^{-1}(A),(u,v),(r,s))) \\ &= (\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})\text{-}\mathrm{dsint}(f^{-1}(A),(u,v),(r,s)). \end{split}$$

Hence the theorem follows.

References

- K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20 (1986), 87-96.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness* : Fuzzy topology, Fuzzy Sets and Systems **49** (1992), 237-242.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Šostak's sense, BUSEFAL 67 (1996), 67-76.

- [6] D. Çoker and A. Haydar Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), 899-909.
- [7] H. Gürçay, D. Çoker, and A. Haydar Eş, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), 365-378.
- [8] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66.
- [9] E. P. Lee and S. O. Lee, Fuzzy intuitionistic almost (r, s)-continuous mappings, Journal of The Chungcheong Mathematical Society 26 (2013), 125-135.
- [10] E. P. Lee and S. O. Lee, Double semiopen sets on double bitopological spaces, Journal of The Chungcheong Mathematical Society 26 (2013), 691-702.
- [11] S. O. Lee and E. P. Lee, Fuzzy pairwise (r, s)-irresolute mappings, International Journal of Fuzzy Logic and Intelligent Systems **9** (2009), 105-109.
- [12] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [13] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II 11 (1985), 89-103.

*

Department of Clinical Laboratory Science Seonam University Namwon 590-711, Republic of Korea *E-mail*: eplee@seonam.ac.kr

**

Department of Mathematics Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: solee@chungbuk.ac.kr