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DOUBLE PAIRWISE (r, s)(u, v)-SEMICONTINUOUS

MAPPINGS

Eun Pyo Lee* and Seung On Lee**

Abstract. We introduce the concepts of (T µγ ,Uµγ)-double (r, s)
(u, v)-semiclosures and (T µγ ,Uµγ)-double (r, s)(u, v)-semiinteriors.
Using the notions, we investigate some of characteristic proper-
ties of double pairwise (r, s)(u, v)-semicontinuous, double pairwise
(r, s)(u, v)-semiopen and double pairwise (r, s)(u, v)-semiclosed map-
pings.

1. Introduction

Chang [2] defined fuzzy topological spaces. These spaces and its
generalizations are later studied by several authors, one of which, devel-
oped by Šostak [13], used the idea of degree of openness. This type of
generalization of fuzzy topological spaces was later rephrased by Chat-
topadhyay, Hazra, and Samanta [3], and by Ramadan [12].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy
sets was introduced by Atanassov [1]. Çoker and his colleagues [4, 6,
7] introduced intuitionistic fuzzy topological spaces using intuitionistic
fuzzy sets. Using the idea of degree of openness and degree of nonopen-
ness, Çoker and M. Demirci [5] defined intuitionistic fuzzy topological
spaces in Šostak’s sense as a generalization of smooth fuzzy topological
spaces and intuitionistic fuzzy topological spaces.

Kandil [8] introduced and studied the notion of fuzzy bitopological
spaces as a natural generalization of fuzzy topological spaces.

In this paper, we introduce the concepts of (T µγ ,Uµγ)-double (r, s)(u, v)-
semiclosures and (T µγ ,Uµγ)-double (r, s)(u, v)-semiinteriors. Using the
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notions, we investigate some of characteristic properties of double pair-
wise (r, s)(u, v)-semicontinuous, double pairwise (r, s)(u, v)-semiopen and
double pairwise (r, s)(u, v)-semiclosed mappings.

2. Preliminaries

Let I be the unit interval [0, 1] of the real line. A member µ of IX

is called a fuzzy set of X. For any µ ∈ IX , µc denotes the complement
1 − µ. By 0̃ and 1̃ we denote constant maps on X with value 0 and
1, respectively. All other notations are standard notations of fuzzy set
theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered
pair

A = (µA, γA)

where the functions µA : X → I and γA : X → I denote the degree of
membership and the degree of nonmembership, respectively, and µA +
γA ≤ 1̃.

Obviously every fuzzy set µ on X is an intuitionistic fuzzy set of the
form (µ, 1̃− µ).

Definition 2.1. [1] Let A = (µA, γA) and B = (µB, γB) be intu-
itionistic fuzzy sets on X. Then

(1) A ⊆ B iff µA ≤ µB and γA ≥ γB.
(2) A = B iff A ⊆ B and B ⊆ A.
(3) Ac = (γA, µA).
(4) A ∩B = (µA ∧ µB, γA ∨ γB).
(5) A ∪B = (µA ∨ µB, γA ∧ γB).
(6) 0∼ = (0̃, 1̃) and 1∼ = (1̃, 0̃).

Let f be a mapping from a set X to a set Y . Let A = (µA, γA) be
an intuitionistic fuzzy set of X and B = (µB, γB) an intuitionistic fuzzy
set of Y . Then:

(1) The image of A under f , denoted by f(A), is an intuitionistic fuzzy
set in Y defined by

f(A) = (f(µA), 1̃− f(1̃− γA)).

(2) The inverse image of B under f , denoted by f−1(B), is an intu-
itionistic fuzzy set in X defined by

f−1(B) = (f−1(µB), f−1(γB)).
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An intuitionistic fuzzy topology on X is a family T of intuitionistic
fuzzy sets in X which satisfies the following properties:

(1) 0∼, 1∼ ∈ T .
(2) If A1, A2 ∈ T , then A1 ∩A2 ∈ T .
(3) If Ai ∈ T for all i, then

⋃
Ai ∈ T .

The pair (X,T ) is called an intuitionistic fuzzy topological space.
Let I(X) be a family of all intuitionistic fuzzy sets of X and let I⊗ I

be the set of the pair (r, s) such that r, s ∈ I and r + s ≤ 1.

Definition 2.2. [13] Let X be a nonempty set. An intuitionistic
fuzzy topology in Šostak’s sense T µγ = (T µ, T γ) on X is a mapping
T µγ : I(X) → I ⊗ I(T µ, T γ : I(X) → I) which satisfies the following
properties:

(1) T µ(0∼) = T µ(1∼) = 1 and T γ(0∼) = T γ(1∼) = 0.
(2) T µ(A ∩B) ≥ T µ(A) ∧ T µ(B) and T γ(A ∩B) ≤ T γ(A) ∨ T γ(B).
(3) T µ(

⋃
Ai) ≥

∧
T µ(Ai) and T γ(

⋃
Ai) ≤

∨
T γ(Ai).

The (X, T µγ) = (X, T µ, T γ) is said to be an intuitionistic fuzzy topolog-
ical space in Šostak’s sense. Also, we call T µ(A) a gradation of openness
of A and T γ(A) a gradation of nonopenness of A.

Definition 2.3. [11] Let A be an intuitionistic fuzzy set in an in-
tuitionistic fuzzy topological space in Šostak’s sense (X, T µ, T γ) and
(r, s) ∈ I ⊗ I. Then A is said to be

(1) a T µγ-fuzzy (r, s)-open set if T µ(A) ≥ r and T γ(A) ≤ s,
(2) a T µγ-fuzzy (r, s)-closed set if T µ(Ac) ≥ r and T γ(Ac) ≤ s.

Let (X, T µ, T γ) be an intuitionistic fuzzy topological space in Šostak’s
sense. For each (r, s) ∈ I⊗I and for each A ∈ I(X), the T µγ-fuzzy (r, s)-
closure is defined by

T µγ-cl(A, (r, s))

=
⋂
{B ∈ I(X) | A ⊆ B,B is T µγ-fuzzy (r, s)-closed}

and the T µγ-fuzzy (r, s)-interior is defined by

T µγ-int(A, (r, s))

=
⋃
{B ∈ I(X) | A ⊇ B,B is T µγ-fuzzy (r, s)-open}.

A system (X, T µγ ,Uµγ) consisting of a set X with two intuitionistic
fuzzy topologies in Šostak’s sense T µγ and Uµγ on X is called a double
bitopological space.
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Definition 2.4. [10] Let A be an intuitionistic fuzzy set of a double
bitopological space (X, T µγ ,Uµγ) and (r, s), (u, v) ∈ I ⊗ I. Then A is
said to be

(1) a (T µγ ,Uµγ)-double (r, s)(u, v)-semiopen set if there is a T µγ-fuzzy
(r, s)-open set B in X such that B ⊆ A ⊆ Uµγ-cl(B, (u, v)),

(2) a (Uµγ , T µγ)-double (u, v)(r, s)-semiopen set if there is an Uµγ-
fuzzy (u, v)-open set B in X such that B ⊆ A ⊆ T µγ-cl(B, (r, s)),

(3) a (T µγ ,Uµγ)-double (r, s)(u, v)-semiclosed set if there is a T µγ-
fuzzy (r, s)-closed set B in X such that Uµγ-int(B, (u, v)) ⊆ A ⊆
B,

(4) a (Uµγ , T µγ)-double (u, v)(r, s)-semiclosed set if there is an Uµγ-
fuzzy (u, v)-closed set B in X such that T µγ-int(B, (r, s)) ⊆ A ⊆
B.

3. Double pairwise (r, s)(u, v)-semicontinuous mappings

Definition 3.1. Let (X, T µγ ,Uµγ) be a double bitopological space
and (r, s), (u, v) ∈ I ⊗ I. For each A ∈ I(X), the (T µγ ,Uµγ)-double
(r, s)(u, v)-semiclosure is defined by

(T µγ ,Uµγ)-dscl(A, (r, s), (u, v)) =
⋂
{B ∈ I(X) | A ⊆ B,

B is (T µγ ,Uµγ)-double (r, s)(u, v)-semiclosed}

and the (Uµγ , T µγ)-double (u, v)(r, s)-semiclosure is defined by

(Uµγ , T µγ)-dscl(A, (u, v), (r, s)) =
⋂
{B ∈ I(X) | A ⊆ B,

B is (Uµγ , T µγ)-double (u, v)(r, s)-semiclosed}.

Definition 3.2. Let (X, T µγ ,Uµγ) be a double bitopological space
and (r, s), (u, v) ∈ I ⊗ I. For each A ∈ I(X), the (T µγ ,Uµγ)-double
(r, s)(u, v)-semiinterior is defined by

(T µγ ,Uµγ)-dsint(A, (r, s), (u, v)) =
⋃
{B ∈ I(X) | A ⊇ B,

B is (T µγ ,Uµγ)-double (r, s)(u, v)-semiopen}

and the (Uµγ , T µγ)-double (u, v)(r, s)-semiinterior is defined by

(Uµγ , T µγ)-dsint(A, (u, v), (r, s)) =
⋃
{B ∈ I(X) | A ⊇ B,

B is (Uµγ , T µγ)-double (u, v)(r, s)-semiopen}.
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Obviously, (T µγ ,Uµγ)-dscl(A, (r, s), (u, v)) is the smallest (T µγ ,Uµγ)-
double (r, s)(u, v)-semiclosed set which contains A and
(T µγ ,Uµγ)-dscl(A, (r, s), (u, v)) = A for any (T µγ ,Uµγ)-double (r, s)(u, v)-
semiclosed set A. Also (T µγ ,Uµγ)-dsint(A, (r, s), (u, v)) is the great-
est (T µγ ,Uµγ)-double (r, s)(u, v)-semiopen set which is contained A and
(T µγ ,Uµγ)-dsint(A, (r, s), (u, v)) = A for any (T µγ ,Uµγ)-double (r, s)(u, v)-
semiopen set A. Moreover, we have

T µγ-int(A, (r, s)) ⊆ (T µγ ,Uµγ)-dsint(A, (r, s), (u, v))

⊆ A
⊆ (T µγ ,Uµγ)-dscl(A, (r, s), (u, v))

⊆ T µγ-cl(A, (r, s)).

Also, we have the following results:

(1) (T µγ ,Uµγ)-dscl(0∼, (r, s), (u, v)) = 0∼ and
(T µγ ,Uµγ)-dscl(1∼, (r, s), (u, v)) = 1∼.

(2) (T µγ ,Uµγ)-dscl(A, (r, s), (u, v)) ⊇ A.
(3) (T µγ ,Uµγ)-dscl(A ∪B, (r, s), (u, v))
⊇ (T µγ ,Uµγ)-dscl(A, (r, s), (u, v))∪(T µγ ,Uµγ)-dscl(B, (r, s), (u, v)).

(4) (T µγ ,Uµγ)-dscl((T µγ ,Uµγ)-dscl(A, (r, s), (u, v)), (r, s), (u, v))
= (T µγ ,Uµγ)-dscl(A, (r, s), (u, v)).

(5) (T µγ ,Uµγ)-dsint(0∼, (r, s), (u, v)) = 0∼ and
(T µγ ,Uµγ)-dsint(1∼, (r, s), (u, v)) = 1∼.

(6) (T µγ ,Uµγ)-dsint(A, (r, s), (u, v)) ⊆ A.
(7) (T µγ ,Uµγ)-dsint(A ∩B, (r, s), (u, v))
⊆ (T µγ ,Uµγ)-dsint(A, (r, s), (u, v))∩(T µγ ,Uµγ)-dsint(B, (r, s), (u, v)).

(8) (T µγ ,Uµγ)-dsint((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)), (r, s), (u, v))
= (T µγ ,Uµγ)-dsint(A, (r, s), (u, v)).

Theorem 3.3. For an intuitionistic fuzzy set A of a double bitopo-
logical space (X, T µγ ,Uµγ) and (r, s), (u, v) ∈ I ⊗ I, we have:

(1) ((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)))c = (T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)).
(2) ((T µγ ,Uµγ)-dscl(A, (r, s), (u, v)))c = (T µγ ,Uµγ)-dsint(Ac, (r, s), (u, v)).

Proof. (1) Since (T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)) is a (T µγ ,Uµγ)-double
(r, s)(u, v)-semiclosed set and Ac ⊆ (T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)), we
have ((T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)))c is a (T µγ ,Uµγ)-double (r, s)(u, v)-
semiopen set of X and ((T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)))c ⊆ A. Thus

((T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)))c

= (T µγ ,Uµγ)-dsint(((T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)))c, (r, s), (u, v))

⊆ (T µγ ,Uµγ)-dsint(A, (r, s), (u, v))
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and hence

((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)))c ⊆ (T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v)).

Conversely, since (T µγ ,Uµγ)-dsint(A, (r, s), (u, v)) is a (T µγ ,Uµγ)-
double (r, s)(u, v)-semiopen set and (T µγ ,Uµγ)-dsint(A, (r, s), (u, v)) ⊆
A, ((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)))c is a (T µγ ,Uµγ)-double (r, s)(u, v)-
semiclosed set of X and Ac ⊆ ((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)))c. Thus

(T µγ ,Uµγ)-dscl(Ac, (r, s), (u, v))

⊆ (T µγ ,Uµγ)-dscl(((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)))c, (r, s), (u, v))

= ((T µγ ,Uµγ)-dsint(A, (r, s), (u, v)))c.

(2) Similar to (1)

Let f : (X, T µγ ,Uµγ) → (Y,Vµγ ,Wµγ) be a mapping from a double
bitopological spaceX to a double bitopological space Y and (r, s), (u, v) ∈
I⊗I. Then f is called a double pairwise (r, s)(u, v)-continuous ((r, s)(u, v)-
open and (r, s)(u, v)-closed, respectively) mapping if the induced map-
ping f : (X, T µγ) → (Y,Vµγ) is fuzzy (r, s)-continuous ((r, s)-open and
(r, s)-closed, respectively) and the induced mapping f : (X,Uµγ) →
(Y,Wµγ) is fuzzy (u, v)-continuous ((u, v)-open and (u, v)-closed, respec-
tively).

Definition 3.4. Let f : (X, T µγ ,Uµγ) → (Y,Vµγ ,Wµγ) be a map-
ping from a double bitopological space X to a double bitopological space
Y and (r, s), (u, v) ∈ I ⊗ I. Then f is called

(1) double pairwise (r, s)(u, v)-semicontinuous if f−1(A) is a (T µγ ,Uµγ)-
double (r, s)(u, v)-semiopen set of X for each Vµγ-fuzzy (r, s)-open
set A of Y and f−1(B) is a (Uµγ , T µγ)-double (u, v)(r, s)-semiopen
set of X for each Wµγ-fuzzy (u, v)-open set B of Y ,

(2) double pairwise (r, s)(u, v)-semiopen if f(C) is a (Vµγ ,Wµγ)-double
(r, s)(u, v)-semiopen set of Y for each T µγ-fuzzy (r, s)-open set C
of X and f(D) is a (Wµγ ,Vµγ)-double (u, v)(r, s)-semiopen set of
Y for each Uµγ-fuzzy (u, v)-open set D of X,

(3) double pairwise (r, s)(u, v)-semiclosed if f(C) is a (Vµγ ,Wµγ)-double
(r, s)(u, v)-semiclosed set of Y for each T µγ-fuzzy (r, s)-closed set
C of X and f(D) is a (Wµγ ,Vµγ)-double (u, v)(r, s)-semiclosed set
of Y for each Uµγ-fuzzy (u, v)-closed set D of X.

It is obvious that every double pairwise (r, s)(u, v)-continuous map-
ping is a double pairwise (r, s)(u, v)-semicontinuous mapping but the
converse need not be true which is shown by the following example.
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Example 3.5. Let X = {x, y} and let A1, A2, A3 and A4 be intu-
itionistic fuzzy sets of X defined as

A1(x) = (0.0, 0.7), A1(y) = (0.4, 0.3);

A2(x) = (0.5, 0.2), A2(y) = (0.6, 0.1);

A3(x) = (0.1, 0.4), A3(y) = (0.7, 0.1);

and

A4(x) = (0.6, 0.1), A4(y) = (0.8, 0.0).

Define T µγ : I(X)→ I ⊗ I and Uµγ : I(X)→ I ⊗ I by

T µγ(A) = (T µ(A), T γ(A)) =


(1, 0) if A = 0∼, 1∼,
(12 ,

1
5) if A = A1,

(0, 1) otherwise;

and

Uµγ(A) = (Uµ(A),Uγ(A)) =


(1, 0) if A = 0∼, 1∼,
(13 ,

1
4) if A = A2,

(0, 1) otherwise.

Then clearly (X, T µγ ,Uµγ) is a double bitopological space on X. Define
Vµγ : I(X)→ I ⊗ I and Wµγ : I(X)→ I ⊗ I by

Vµγ(A) = (Vµ(A),Vγ(A)) =


(1, 0) if A = 0∼, 1∼,
(12 ,

1
5) if A = A3,

(0, 1) otherwise;

and

Wµγ(A) = (Wµ(A),Wγ(A)) =


(1, 0) if A = 0∼, 1∼,
(13 ,

1
4) if A = A4,

(0, 1) otherwise.

Then clearly (X,Vµγ ,Wµγ) is a double bitopological space on X. Con-
sider the identity mapping 1X : (X, T µγ ,Uµγ) → (X,Vµγ ,Wµγ). Then
it is a double pairwise (12 ,

1
5)(13 ,

1
4)-semicontinuous mapping which is not

a double pairwise (12 ,
1
5)(13 ,

1
4)-continuous mapping.

Theorem 3.6. Let f : (X, T µγ ,Uµγ)→ (Y,Vµγ ,Wµγ) be a mapping
and (r, s), (u, v) ∈ I ⊗ I. Then the following statements are equivalent:

(1) f is a double pairwise (r, s)(u, v)-semicontinuous mapping.
(2) f−1(A) is a (T µγ ,Uµγ)-double (r, s)(u, v)-semiclosed set of X for

each Vµγ-fuzzy (r, s)-closed set A of Y and f−1(B) is a (Uµγ , T µγ)-
double (u, v)(r, s)-semiclosed set of X for each Wµγ-fuzzy (u, v)-
closed set B of Y .
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(3) For each intuitionistic fuzzy set C of X,

f((T µγ ,Uµγ)-dscl(C, (r, s), (u, v))) ⊆ Vµγ-cl(f(C), (r, s))

and

f((Uµγ , T µγ)-dscl(C, (u, v), (r, s))) ⊆ Wµγ-cl(f(C), (u, v)).

(4) For each intuitionistic fuzzy set A of Y ,

(T µγ ,Uµγ)-dscl(f−1(A), (r, s), (u, v)) ⊆ f−1(Vµγ-cl(A, (r, s)))

and

(Uµγ , T µγ)-dscl(f−1(A), (u, v), (r, s)) ⊆ f−1(Wµγ-cl(A, (u, v))).

(5) For each intuitionistic fuzzy set A of Y ,

f−1(Vµγ-int(A, (r, s))) ⊆ (T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v))

and

f−1(Wµγ-int(A, (u, v))) ⊆ (Uµγ , T µγ)-dsint(f−1(A), (u, v), (r, s)).

Proof. (1) ⇒ (2) It is obvious.
(2) ⇒ (3) Let C be any intuitionistic fuzzy set of X. Then f(C) is

an intuitionistic fuzzy set of Y , and hence Vµγ-cl(f(C), (r, s)) is Vµγ-
fuzzy (r, s)-closed and Wµγ-cl(f(C), (u, v)) is Wµγ-fuzzy (u, v)-closed
in Y . By (2), we have f−1(Vµγ-cl(f(C), (r, s))) is a (T µγ ,Uµγ)-double
(r, s)(u, v)-semiclosed set and f−1(Wµγ-cl(f(C), (u, v))) is a (Uµγ , T µγ)-
double (u, v)(r, s)-semiclosed set of X. Also,

C ⊆ f−1f(C) ⊆ f−1(Vµγ-cl(f(C), (r, s)))

and

C ⊆ f−1f(C) ⊆ f−1(Wµγ-cl(f(C), (u, v))).

Thus

(T µγ ,Uµγ)-dscl(C, (r, s), (u, v))

⊆ (T µγ ,Uµγ)-dscl(f−1(Vµγ-cl(f(C), (r, s))), (r, s), (u, v))

= f−1(Vµγ-cl(f(C), (r, s)))

and

(Uµγ , T µγ)-dscl(C, (u, v), (r, s))

⊆ (Uµγ , T µγ)-dscl(f−1(Wµγ-cl(f(C), (u, v))), (u, v), (r, s))

= f−1(Wµγ-cl(f(C), (u, v))).
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Hence

f((T µγ ,Uµγ)-dscl(C, (r, s), (u, v))) ⊆ ff−1(Vµγ-cl(f(C), (r, s)))

⊆ Vµγ-cl(f(C), (r, s))

and

f((Uµγ , T µγ)-dscl(C, (u, v), (r, s))) ⊆ ff−1(Wµγ-cl(f(C), (u, v)))

⊆ Wµγ-cl(f(C), (u, v)).

(3) ⇒ (4) Let A be any intuitionistic fuzzy set of Y . Then f−1(A) is
an intuitionistic fuzzy set of X. By (3), we have

f((T µγ ,Uµγ)-dscl(f−1(A), (r, s), (u, v))) ⊆ Vµγ-cl(ff−1(A), (r, s))

⊆ Vµγ-cl(A, (r, s))

and

f((Uµγ , T µγ)-dscl(f−1(A), (u, v), (r, s))) ⊆ Wµγ-cl(ff−1(A), (u, v))

⊆ Wµγ-cl(A, (u, v)).

Thus
(T µγ ,Uµγ)-dscl(f−1(A), (r, s), (u, v))

⊆ f−1f((T µγ ,Uµγ)-dscl(f−1(A), (r, s), (u, v)))

⊆ f−1(Vµγ-cl(A, (r, s)))

and
(Uµγ , T µγ)-dscl(f−1(A), (u, v), (r, s))

⊆ f−1f((Uµγ , T µγ)-dscl(f−1(A), (u, v), (r, s)))

⊆ f−1(Wµγ-cl(A, (u, v))).

(4) ⇒ (5) Let A be any intuitionistic fuzzy set of Y . By (4),

(T µγ ,Uµγ)-dscl(f−1(A)c, (r, s), (u, v)) ⊆ f−1(Vµγ-cl(Ac, (r, s)))

and

(Uµγ , T µγ)-dscl(f−1(A)c, (u, v), (r, s)) ⊆ f−1(Wµγ-cl(Ac, (u, v))).

By Theorem 3.3, we have

f−1(Vµγ-int(A, (r, s))) = (f−1(Vµγ-cl(Ac, (r, s))))c

⊆ ((T µγ ,Uµγ)-dscl(f−1(A)c, (r, s), (u, v)))c

= (T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v))
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and

f−1(Wµγ-int(A, (u, v))) = (f−1(Wµγ-cl(Ac, (u, v))))c

⊆ ((Uµγ , T µγ)-dscl(f−1(A)c, (u, v), (r, s)))c

= (Uµγ , T µγ)-dsint(f−1(A), (u, v), (r, s)).

(5)⇒ (1) LetA be any Vµγ-fuzzy (r, s)-open set andB anyWµγ-fuzzy
(u, v)-open set of Y . ThenA = Vµγ-int(A, (r, s)) andB =Wµγ-int(B, (u, v)).
By (5)

f−1(A) = f−1(Vµγ-int(A, (r, s)))

⊆ (T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v))

⊆ f−1(A)

and
f−1(B) = f−1(Wµγ-int(B, (u, v)))

⊆ (Uµγ , T µγ)-dsint(f−1(B), (u, v), (r, s))

⊆ f−1(B).

Thus

f−1(A) = (T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v))

and

f−1(B) = (Uµγ , T µγ)-dsint(f−1(B), (u, v), (r, s)).

Hence f−1(A) is a (T µγ ,Uµγ)-double (r, s)(u, v)-semiopen set and f−1(B)
is an (Uµγ , T µγ)-double (u, v)(r, s)-semiopen set of X. Therefore f is a
double pairwise (r, s)(u, v)-semicontinuous mapping.

Theorem 3.7. Let f : (X, T µγ ,Uµγ) → (Y,Vµγ ,Wµγ) be a bijec-
tion and (r, s), (u, v) ∈ I ⊗ I. Then f is a double pairwise (r, s)(u, v)-
semicontinuous mapping if and only if for each intuitionistic fuzzy set C
of X,

Vµγ-int(f(C), (r, s)) ⊆ f((T µγ ,Uµγ)-dsint(C, (r, s), (u, v)))

and

Wµγ-int(f(C), (u, v)) ⊆ f((Uµγ , T µγ)-dsint(C, (u, v), (r, s))).

Proof. Let C be any intuitionistic fuzzy set of X. Since f is one-to-
one,

f−1(Vµγ-int(f(C), (r, s))) ⊆ (T µγ ,Uµγ)-dsint(f−1f(C), (r, s), (u, v))

= (T µγ ,Uµγ)-dsint(C, (r, s), (u, v))



Double pairwise (r, s)(u, v)-semicontinuous mappings 613

and

f−1(Wµγ-int(f(C), (u, v))) ⊆ (Uµγ , T µγ)-dsint(f−1f(C), (u, v), (r, s))

= (Uµγ , T µγ)-dsint(C, (u, v), (r, s)).

Since f is onto, we have

Vµγ-int(f(C), (r, s)) = ff−1(Vµγ-int(f(C), (r, s)))

⊆ f((T µγ ,Uµγ)-dsint(C, (r, s), (u, v)))

and

Wµγ-int(f(C), (u, v)) = ff−1(Wµγ-int(f(C), (u, v)))

⊆ f((Uµγ , T µγ)-dsint(C, (u, v), (r, s))).

Conversely, let A be any intuitionistic fuzzy set of Y . Since f is onto,

Vµγ-int(A, (r, s)) = Vµγ-int(ff−1(A), (r, s))

⊆ f((T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v)))

and

Wµγ-int(A, (u, v)) =Wµγ-int(ff−1(A), (u, v))

⊆ f((Uµγ , T µγ)-dsint(f−1(A), (u, v), (r, s))).

since f is one-to-one, we have

f−1(Vµγ-int(A, (r, s))) ⊆ f−1f((T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v)))

= (T µγ ,Uµγ)-dsint(f−1(A), (r, s), (u, v))

and

f−1(Wµγ-int(A, (u, v))) ⊆ f−1f((Uµγ , T µγ)-dsint(f−1(A), (u, v), (r, s)))

= (T µγ ,Uµγ)-dsint(f−1(A), (u, v), (r, s)).

Hence the theorem follows.
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