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DOUBLE PAIRWISE (r, s)(u, v)-SEMICONTINUOUS
MAPPINGS

EuN Pyo LEE* AND SEUNG ON LEE**

ABSTRACT. We introduce the concepts of (7+7,U*”)-double (r, s)
(u, v)-semiclosures and (7"7,U"7)-double (r, s)(u, v)-semiinteriors.
Using the notions, we investigate some of characteristic proper-
ties of double pairwise (r, s)(u, v)-semicontinuous, double pairwise
(r, 8)(u, v)-semiopen and double pairwise (r, s)(u, v)-semiclosed map-
pings.

1. Introduction

Chang [2] defined fuzzy topological spaces. These spaces and its
generalizations are later studied by several authors, one of which, devel-
oped by Sostak [13], used the idea of degree of openness. This type of
generalization of fuzzy topological spaces was later rephrased by Chat-
topadhyay, Hazra, and Samanta [3], and by Ramadan [12].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy
sets was introduced by Atanassov [1]. Coker and his colleagues [4, 6,
7] introduced intuitionistic fuzzy topological spaces using intuitionistic
fuzzy sets. Using the idea of degree of openness and degree of nonopen-
ness, Qoker and M. Demirci [5] defined intuitionistic fuzzy topological
spaces in Sostak’s sense as a generalization of smooth fuzzy topological
spaces and intuitionistic fuzzy topological spaces.

Kandil [8] introduced and studied the notion of fuzzy bitopological
spaces as a natural generalization of fuzzy topological spaces.

In this paper, we introduce the concepts of (7#Y,U*7)-double (r, s)(u, v)-
semiclosures and (77, U"7)-double (r, s)(u,v)-semiinteriors. Using the
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notions, we investigate some of characteristic properties of double pair-
wise (r, s)(u, v)-semicontinuous, double pairwise (, s)(u, v)-semiopen and
double pairwise (7, s)(u, v)-semiclosed mappings.

2. Preliminaries

Let I be the unit interval [0, 1] of the real line. A member u of IX
is called a fuzzy set of X. For any u € IX, u¢ denotes the complement
1 —p. By 0 and 1 we denote constant maps on X with value 0 and
1, respectively. All other notations are standard notations of fuzzy set
theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered
pair

A= (pa,74)
where the functions g4 : X — I and v4 : X — I denote the degree of
membership and the degree of nonmembership, respectively, and pa +
4 <1

Obviously every fuzzy set p on X is an intuitionistic fuzzy set of the
form (p, 1 — p).

DEFINITION 2.1. [1] Let A = (ua,v4) and B = (up,yp) be intu-
itionistic fuzzy sets on X. Then

(1) ACBiff ug < pp and v4 > vp.
(2) A Biff AC B and B C A.
(3) A= (74, p4).

(4) AﬂB (A A pB,vA NV YB).
(5) AUB = (pa V pp,vA A YB).

(6) 0 ( 1) and 1. = (1,0).

Let f be a mapping from a set X to a set Y. Let A = (ua,v4) be
an intuitionistic fuzzy set of X and B = (up,yp) an intuitionistic fuzzy
set of Y. Then:

(1) The image of A under f, denoted by f(A), is an intuitionistic fuzzy
set in Y defined by

F(A) = (f(pa), 1= f(1 = 7a)).

(2) The inverse image of B under f, denoted by f~!(B), is an intu-
itionistic fuzzy set in X defined by

FHB) = (fHus), f(vB)).
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An intuitionistic fuzzy topology on X is a family T of intuitionistic
fuzzy sets in X which satisfies the following properties:
(1) 0,1 € T.
(2) If Ay, Ao € T, then Ai1NAy e T.
(3) If A; € T for all 4, then |JA; € T.
The pair (X, T) is called an intuitionistic fuzzy topological space.
Let I(X) be a family of all intuitionistic fuzzy sets of X and let I ® I
be the set of the pair (r,s) such that r,s € [ and r + s < 1.

DEFINITION 2.2. [13] Let X be a nonempty set. An intuitionistic
fuzzy topology in Sostak’s sense THY = (T*,77) on X is a mapping
THY (X)) - I QI(TH,TY : I(X) — I) which satisfies the following
properties:

(1) TH0~) =TH*(1)=1and T7(0~) =T7(1.) = 0.

(2) THANB) > THA)ANTH(B) and TY(ANB) <T7(A)V TY(B).

(3) TH(UAi) = ANTH(Ai) and T7(UJ Ai) <V T7(A4).
The (X, THY) = (X, TH#,T7) is said to be an intuitionistic fuzzy topolog-
ical space in Sostak’s sense. Also, we call TH(A) a gradation of openness
of A and T7(A) a gradation of nonopenness of A.

DEFINITION 2.3. [11] Let A be an intuitionistic fuzzy set in an in-
tuitionistic fuzzy topological space in Sostak’s sense (X, 7#,77) and
(r,s) € I®I. Then A is said to be

(1) a TH-fuzzy (1, s)-open set if TH(A) > r and T7(A) < s,
(2) a TH-fuzzy (1, s)-closed set if TH(A®) > r and T7(A°) < s.

Let (X, 7*,7”) be an intuitionistic fuzzy topological space in Sostak’s
sense. For each (r,s) € I®I and for each A € I(X), the THV-fuzzy (r, s)-
closure is defined by

THI-cl(A, (r,s))
= m{B € I(X) | AC B, B is TH-fuzzy (r, s)-closed }
and the THY-fuzzy (r, s)-interior is defined by
TH-int(A, (r, s))
= | J{B€I(X)| A2 B,Bis T""-fuzzy (r, s)-open}.

A system (X, THY,U"7) consisting of a set X with two intuitionistic
fuzzy topologies in Sostak’s sense T#? and U*7 on X is called a double
bitopological space.
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DEFINITION 2.4. [10] Let A be an intuitionistic fuzzy set of a double
bitopological space (X, THY,U"Y) and (r,s), (u,v) € I @ I. Then A is
said to be

(1) a (THY,U*)-double (r, s)(u, v)-semiopen set if there is a THV-fuzzy
(r,s)-open set B in X such that B C A C U"-cl(B, (u,v)),

(2) a (UM, THY)-double (u,v)(r,s)-semiopen set if there is an UM7-
fuzzy (u,v)-open set B in X such that B C A C TH*-cl(B, (r, s)),

(3) a (THY,U7)-double (r,s)(u,v)-semiclosed set if there is a TH7-
fuzzy (r,s)-closed set B in X such that U*7-int(B, (u,v)) C A C
B7

(4) a (UMY, THY)-double (u,v)(r, s)-semiclosed set if there is an UH7-
fuzzy (u,v)-closed set B in X such that 7H7-int(B, (r,s)) C A C
B.

3. Double pairwise (7, s)(u,v)-semicontinuous mappings

DEFINITION 3.1. Let (X, T#Y,U"7) be a double bitopological space
and (r,s),(u,v) € I ® I. For each A € I(X), the (THY,U"7)-double
(r, s)(u,v)-semiclosure is defined by

(TH UMY )-dscl(A, (r, s) =({BeI(X)|ACB,
B is (T’”,Z/{’W)—double (r,s)(u, v)-semiclosed }
and the (UMY, THY)-double (u,v)(r, s)-semiclosure is defined by

UMY, THY)-dscl(A, (u,v =({BeI(X)|ACB,
B is (U“’Y,T‘”)—double (u,v)(r, s)-semiclosed }.
DEFINITION 3.2. Let (X, THY,U"Y) be a double bitopological space
and (r,s),(u,v) € I ® I. For each A € I(X), the (T, U"7)-double
(r, s)(u,v)-semiinterior is defined by
(TH7,UM)-dsint(A, (r, 5), (u,v)) = {B € I(X) | A2 B,
B is (TW Z/l’”) double (7, s)(u, v)-semiopen}
and the (UMY, THY)-double (u,v)(r, s)-semiinterior is defined by
(U, TH7)-dsint(A, (u,0), (r,s)) = {B € I(X) | A2 B,
)-d

B is (Z/l’w T#7)-double (u,v)(r, s)-semiopen}.
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Obviously, (THY,U*Y)-dscl(A, (r, s), (u,v)) is the smallest (TH7,UH7)-
double (7, s)(u, v)-semiclosed set which contains A and
(THY,UPY)-dscl(A, (r, s), (u,v)) = A for any (THY,U*Y)-double (r, s)(u, v)-
semiclosed set A. Also (TH7,UMY)-dsint(A, (r,s), (u,v)) is the great-
est (TH7,UHY)-double (r, s)(u, v)-semiopen set which is contained A and
(THY,UP)-dsint (A, (1, s), (u,v)) = A for any (TH*Y,U"7)-double (r, s)(u, v)-
semiopen set A. Moreover, we have

THY-int(A, (r,s)) C (TH,U"7)-dsint(A, (r, s), (u,v))
CcCA
- (T#V7UH'Y)_dSC](A7 (T, 8)7 (U, ’U))
C TH-cl(A, (r,s)).
Also, we have the following results:
(1) (T, Ur7)-dscl(0~, (1, s), (u,v)) = 0. and
(THY UMY )-dscl(1, (1, 8), (u,v)) = 1.
(2) (T“’y?uu’y)—dSCI(A, (Ta S)a (ua )) = A.
(3) (Tu’yvuu’y)_dSCl(AUBa (T7 ) ( ))
= (Tl”?u/”)—dscl(A, (T, ) ( ))U(TNW u“’y)_dSCI(Bv (T, S)a (’LL, U))
(4) (79, U )-dsel (T, U )-dscl (A, (1, ), (u, 0)), (r, ), (1, v))
= (T, UM7)-dscl(A, (r, s), (u,v)).
(5) (THY,Ur7)-dsint(0~, (1, s), (u,v)) = 0. and
(THY, UMY)-dsint(1~, (r, ), (u,v)) = 1o
(6) (THY,Ur7)-dsint(A (r, s), (u,v)) C A.
(7) (T“'Y,Z/I“V)—dsint(AﬂB (r, ) (u,v))
- (T’Wy Z/{‘w‘y)—dSth(A, (Tv 3)7 ('LL, U))H(T‘wn L{W)—dsint(B, (Tv 8)7 (U, 'U))
= (TH7,UMY)-dsint (A, (r, s), (u, v)).

THEOREM 3.3. For an intuitionistic fuzzy set A of a double bitopo-
logical space (X, TH,U*) and (r,s), (u,v) € I ® I, we have:

(1) ((T"7,UF)-dsint(A, (r, s), (u,)))* = (TH7,UM)-dscl(AS, (r, s), (u, ).
(2) ((T#7,U)-dscl(A, (r, s), (u, 0)))° = (T, U dsint(A, (r, ), (u, v)).

Proof. (1) Since (TH7,UM)-dscl(AS, (r, s), (u,v)) is a (THY,U"7)-double
(r,5)(u, v)-semiclosed set and A¢ C (THY,UM7)-dscl(AS, (1, s), (u,v)), we
have ((T”V,U“V)—dscl(AC,( T, S), (u v)))¢is a (T“”,U‘”)—double (r s)(u,v)-
semiopen set of X and ((7TH7,UH7)-dscl(A, (r,s), (u,v)))¢ C A. Thus

((TH7,U"7)-dscl(A®, (r, 5), (u, v)))*
— (T, U )-dsint (7,1 )-dsel (A (r, ), (u, 0)))°, (r, ), (1, 0))
C (TH7,U")-dsint(A, (r, s), (u,v))
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and hence
(T, UM)-dsint (A, (r, s), (u,v)))¢ C (T, UM)-dscl(AS, (1, s), (u, v)).

Conversely, since (TH7,UM)-dsint(A4, (1, s), (u,v)) is a (TH,U*T)-
double (r, s)(u, v)-semiopen set and (7TH7,U"Y)-dsint(A4, (1, s), (u,v)) C
A, ((THY UFY)-dsint(A, (1, s), (u,v)))¢ is a (THY,U*T)-double (r, s)(u, v)-
semiclosed set of X and A® C ((TH7,U"7)-dsint(A, (r,s), (u,v)))¢. Thus

(THY,UM)-dscl(AC, (1, s), (u,v))
C(T*,UM)-dscl(((THY,U")-dsint (A, (r, s), (u, v))), (r, ), (u,v))
= ((T*,U"7)-dsint(A, (r, s), (u,v)))".

(2) Similar to (1) O

Let f: (X, T U") — (Y, V¥, WHY) be a mapping from a double
bitopological space X to a double bitopological space Y and (r, s), (u,v) €
I®I. Then f is called a double pairwise (r, s)(u, v)-continuous ((r, s)(u,v)-
open and (r, s)(u,v)-closed, respectively) mapping if the induced map-
ping f: (X, TH) — (Y, V") is fuzzy (r, s)-continuous ((r, s)-open and
(r, s)-closed, respectively) and the induced mapping f : (X,U*7) —
(Y, WHY) is fuzzy (u, v)-continuous ((u, v)-open and (u, v)-closed, respec-
tively).

DEFINITION 3.4. Let f : (X, T, U") — (Y, V¥, WHY) be a map-
ping from a double bitopological space X to a double bitopological space
Y and (r,s), (u,v) € I ® I. Then f is called

(1) double pairwise (r, s)(u, v)-semicontinuous if f=1(A)isa (TH,U*)-
double (r, s)(u, v)-semiopen set of X for each V*7-fuzzy (r, s)-open
set Aof Y and f~1(B) is a (U*Y, TH7)-double (u,v)(r, s)-semiopen
set of X for each WHV-fuzzy (u,v)-open set B of Y,

(2) double pairwise (r, s)(u, v)-semiopenif f(C) isa (V7 WHY)-double
(r,s)(u,v)-semiopen set of Y for each T#7-fuzzy (r, s)-open set C
of X and f(D) is a (WHY, V¥7)-double (u,v)(r, s)-semiopen set of
Y for each UH7-fuzzy (u,v)-open set D of X,

(3) double pairwise (r, s)(u,v)-semiclosedif f(C) is a (V*7, WHY)-double
(r, s)(u,v)-semiclosed set of Y for each TH7-fuzzy (r, s)-closed set
C of X and f(D) is a (WHY, V¥7)-double (u,v)(r, s)-semiclosed set
of Y for each UM-fuzzy (u,v)-closed set D of X.

It is obvious that every double pairwise (r, s)(u,v)-continuous map-
ping is a double pairwise (7, s)(u,v)-semicontinuous mapping but the
converse need not be true which is shown by the following example.
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ExAMPLE 3.5. Let X = {z,y} and let Ay, A3, A3 and A4 be intu-
itionistic fuzzy sets of X defined as

AS(J;) = (01704)7 A3(y) = (077 01)7
and
Ay(x) = (0.6,0.1), A4(y) = (0.8,0.0).
Define TH : I(X) - I ® I and UM : [(X) - I ® I by
(1,0) if A=0.,1.,
TH(A) = (TMA), TI(A) = (3,5) if A=Ay,
(0,1) otherwise;
and
(1,0) if A=0.,1.,
U(A) = UH(A),U(A) = q (3.7) if A=Ay
(0,1) otherwise.

Then clearly (X, TH*Y,U") is a double bitopological space on X. Define
VI [(X) = T® T and W I(X) = 11 by

1
VII(A) = (VH(A),VI(A)) =S (5,3) if A= 43,
0
and
1
WHI(A) = WH(A), WY (A) = § (5,3) if A=Ay,

Then clearly (X, V*Y , WHY) is a double bitopological space on X. Con-
sider the identity mappmg 1x : (X, THF,UM) — (X, V¥ WHY). Then
it is a double pairwise (5 5)(3, 4) -semicontinuous mapping which is not
a double pairwise (2, 5)(%, i) continuous mapping.

THEOREM 3.6. Let f: (X, T, U") — (Y, V*, WHY) be a mapping
and (r,s), (u,v) € I ® I. Then the following statements are equivalent:

(1) f is a double pairwise (r, s)(u, v)-semicontinuous mapping.

(2) f7L(A) is a (T, U*)-double (r, s)(u,v)-semiclosed set of X for
each VW-fuzzy (r, s)-closed set A of Y and f~(B) is a (U7, TH)-
double (u,v)(r, s)-semiclosed set of X for each WHV-fuzzy (u,v)-
closed set B of Y.
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(3) For each intuitionistic fuzzy set C of X,
FUTH UMY )-dscl(C, (r, 8), (u, v))) € VH-cl(£(C), (r; 5))
and
FU, T#)-dsel(C, (u, ), (1, 5))) € WHI=cl(£(C), ().
(4) For each intuitionistic fuzzy set A of Y,
(T, UM)-dscl(f~H(A), (r,5), (u,0)) © fFHVM-cl(A, (r, 5)))
and
(UM, TH)-dscl(f 1 (A), (u,v), (r,5)) © f~HW7-cl(A, (u,v))).
(5) For each intuitionistic fuzzy set A of Y,
FEOVM-int(A, (r,8))) C (T, UP)-dsint(f 1 (A), (r, 5), (u,v))
and
FEOWM-int(A, (u,v))) C UMY, THY)-dsint(f 1 (A), (u,v), (1, 5)).

Proof. (1) = (2) It is obvious.

(2) = (3) Let C be any intuitionistic fuzzy set of X. Then f(C) is
an intuitionistic fuzzy set of Y, and hence V*'-cl(f(C), (r,s)) is V*-
fuzzy (r,s)-closed and WH*-cl(f(C), (u,v)) is WH-fuzzy (u,v)-closed
in Y. By (2), we have f=1(V*-cl(f(C),(r,s))) is a (T*,U*7)-double
(7, 5)(u, v)-semiclosed set and f~1(WH-cl(f(C), (u,v))) is a (U, TH)-
double (u,v)(r, s)-semiclosed set of X. Also,

C C fTH(O) C fTHV=el(£(C), (r,9)))

and
C CfH(C) C fTHWH=el(f(O), (u,v)).
Thus
(TH7UFY)-dscl(C, (1, 8), (u,v))
C (TH7, UM )-dscl(f~H(VH-cl(f(O), (1, 9))), (1, 5), (u, v))
= [T VM-C(f(C), (r,9)))
and

(UPT, THY)-dscl(C, (u,v), (1, s))
C (UM, TH)-dsel(f~HWH-cl(£(C), (u, v))), (u, v), (1, 5))
= [T WI-el(f(C), (u, v))).
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Hence

f((T'LW,U'LW)—dSCl(C, (Ta 5)7 (’LL, U))) C ff_l(vlw_d(f(c)v (Tv S)))
C VI-el(f(C), (r,s))
and
FUUM, THY)-dscl(C, (u,0), (r,8))) © fFHWV-Cl(f(O), (u,v)))
g WH’Y’CI(f(C)a (u7 1)))
(3) = (4) Let A be any intuitionistic fuzzy set of Y. Then f~!(A) is
an intuitionistic fuzzy set of X. By (3), we have
FUTH, U )-dsel(F7H(A), (1, 5), (w,0))) € VI-cl(ffH(A), (r,5))
C VW-cl(A, (r,s))
and
FIUM, T )-dsel(F71(A), (w, ), (r, 5))) € WH=Cl(ff1(A), (u,0))
C WHI-cl(A, (u,v)).

Thus
(TH7, UM )-dscl(f~1(A), (r, ), (u, v))
C fHATH UM )-dsel(f7H(A), (ry ), (u,0)))
C fTH V(A (1, 5)))

and

UM, T )-dscl(f 1 (A), (u,v), (1, )
C (U, TH)-dsel(f 1 (A), (u,v), (r, 8)))
C fFHWHI-Cl(A, (u,v))).
(4) = (5) Let A be any intuitionistic fuzzy set of Y. By (4),
(T, UPY)-dscl(f~L(A)S, (1, 5), (u,v)) C fHVH¥I-cl(AS, (1, 5)))
and
UMY, TH)-dscl(f~L(A)C, (u,v), (r, s)) € fHWHT-cl(AS, (u,v))).
By Theorem 3.3, we have
FHVM-int(A, (ry ) = (f 1 (VH7-cl(AC, (r, 9))))°
C (T, UF)-dscl(f~(A), (7, 5), (u, v)))°
= (T*,U")-dsint(f~L(A), (r,5), (u,v))
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and
FEOVM-int(A, (u,0))) = (f~HWV-Cl(AS, (u, v))))°
- ((U/Wv T#’y)'de(fil(A)cﬂ (u, U)v (Tv 3)))C
= (UMY, TH)-dsint(f~1(A), (u,v), (r, 5)).

(5) = (1) Let A be any V*?-fuzzy (r, s)-open set and B any WH7-fuzzy
(u,v)-open set of Y. Then A = V*-int(A, (r, s)) and B = WH-int(B, (u, v)).
By (5)

FHA) = IV -ing(A, (1, 5)))

C (TH,U*)-dsint (f 71 (A), (7, 5), (u, v))
C (A
and
FB) = £ OV (B, (u,0))
C (UM, TH)-dsint(f 1 (B), (u,v), (r, 5))
C f74(B).
Thus
FHA) = (T, urY)-dsint(f 1 (A), (r, ), (u, v))
and

fﬁl(B) = (UM’Y, Tu’y)_dSint(fil(B% (u7 U)v (Tv 8))
Hence f~1(A)is a (TH7,U"Y)-double (r, s)(u, v)-semiopen set and f~1(B)
is an (UMY, TH7)-double (u,v)(r, s)-semiopen set of X. Therefore f is a
double pairwise (7, s)(u, v)-semicontinuous mapping. O

THEOREM 3.7. Let f : (X, TH,U*) — (Y, V¥, WHY) be a bijec-
tion and (r,s), (u,v) € I ® I. Then f is a double pairwise (r,s)(u,v)-
semicontinuous mapping if and only if for each intuitionistic fuzzy set C
of X,

VT -int(f(C), (r,s)) € f((TH,U")-dsint(C, (r, s), (u,v)))
and
WHY-int(f(C), (u,v)) C fF((U", TH)-dsint(C, (u,v), (1, s))).

Proof. Let C be any intuitionistic fuzzy set of X. Since f is one-to-
one,

FHV-nt(f(C), (ry ) S (TH7,UMY)-dsint(f " f(C), (7, 5), (u,v))
= (T, U*7)-dsint(C, (r, s), (u, v))
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and
FTEOVM-mt(f(O), (u,0))) © UM, TH)-dsint(f 1 f(C), (u,v), (r, 5))
= (UM, TH7)-dsint(C, (u,v), (1, s)).
Since f is onto, we have
VIint(f(C), (r,5)) = £~ (-t (£(C), (r, 5)))
C f((T*,U")-dsint(C, (1, s), (u, v)))
and
WH-int(f(C), (u,v)) = ff~HWH-int(£(C), (u, v)))
C f((U™, THEY)-dsint(C, (u,v), (1, s))).
Conversely, let A be any intuitionistic fuzzy set of Y. Since f is onto,
VR int(A, (r,5)) = VF-int(f fH(A), (1, 5))
C FUTM, UM )-dsint(f1(A), (r, 5), (u, v)))
and
WHY-int(A, (u,v)) = WH-int(ff~L(A), (u,v))
C (U, TH)-dsint(f~1(A), (u,0), (1, 5))).
since f is one-to-one, we have
FHOM-int(A, (r,5))) © F7HF((TH,UPY)-dsing(f7H(A), (r, ), (u, v)))
= (T*,UP)-dsint(f 1 (A), (1, 5), (u,v))
and
FHOV-int (A, (u, v))) C f (UM, TH)-dsint(f 1 (A), (u, 0), (r, 5)))
= (T*,U")-dsint(f~L(A), (u,v), (1, 5)).

Hence the theorem follows. O
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